General Equilbrium Policy Analysis Lecture 1

Philip Schuster

at the Institute for Advanced Studies, Vienna

Vienna, April 13, 2015

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

Outline

Introduction

Solving Deterministic Dynamic Perfect Foresight Models

A Simple Ramsey Model

Implementation on the PC

イロン スピン スヨン スヨン 三日

Type of questions to be answered

- "What are the medium-run effects on GDP of revenue-neutrally shifting emphasize from the income to the value added tax in Spain?"
- "How much would the effective retirement age in Austria have to change over time to offset the effects from increasing population aging keeping all other pension system parameters constant?"
- "What are the consequences of increasing yearly migration flows to the United Kingdom to its public budgets?"

イロト 不得下 イヨト イヨト 二日

Goals of the course

The goals of the course are...

- to introduce students to tools to answer policy questions such as those from the previous slide,
- to give a thorough understanding of how these tools work (look inside the black back instead of using front end modeling tools),
- and to do this step by step starting from the easiest model by adding model components sequentially,
- while giving a detailed documentation of the derivations and the computer codes.

Scope of the course

Focus on **dynamic computable general equilibrium** models mainly for **fiscal policy** simulation, in particular **transitional effects** of policies related to the **tax, social security and the pension system** with an emphasis on the household sector.

What is **not covered**:

- Aggregate shocks (DSGE).
- Certain idiosyncratic shocks (heterogenous agents literature).
- Inflation and monetary policy.
- Normative analyses.
- ► A detailed modeling of the production side (e.g. various sectors of the economy, often done as a static CGE exercise).

イロト 不得 トイヨト イヨト ニヨー

Tentative outline of the course

- ► 1. Lecture: Introduction to solution algorithm, compute transitions for simple Ramsey model
- ► 2. Lecture: Introduction to OLG, Blanchard model in open economy with demographic change
- ► 3. Lecture: Endogenous labor supply, introduction of government and simulation of fiscal policy
- ► 4. Lecture: Unanticipated shocks, Walras' Law, effective taxation and progressivity and some principle comments on debugging and calibration
- ▶ 5. Lecture: Introduction to Gertler model and probabilistic aging.
- ► 6. Lecture: Introduction to Auerbach-Kotlikoff model, earnings-related pensions.
- ► 7. Lecture: Intergenerational distribution, calibration and possible extensions to the Auerbach-Kotlikoff model.

Material from https://sites.google.com/site/schusterphilip/: Manuscript (under continuous development), Slides (available before the lecture), MATLAB codes.

Time slots

- ▶ 1. Lecture: April 13, 2014, 16:30 18:30, Room IT A014
- I. Practice Session: April 15, 2014, 11:00 13:00, Room IT A014
- 2. Lecture: April 15, 2014, 16:30 18:30, Room IT A014
- 2. Practice Session: April 20, 2014, 10:30 12:30, Room IT A014
- 3. Lecture: April 20, 2014, 16:30 18:30, Room IT A014
- ▶ 4. Lecture: April 23, 2014, 16:30 18:30, Room IT A014
- ▶ 3. Practice Session: April 27, 2014, 11:00 13:00, Room IT A014
- ▶ 5. Lecture: April 27, 2014, 16:30 18:30, Room IT A014
- ▶ 6. Lecture: April 30, 2014, 16:30 18:30, Room IT A014
- ► 4. Practice Session: May 4, 2014, 11:00 13:00, Room IT A014
- 7. Lecture: May 4, 2014, 16:30 18:30, Room IT A014

Homework

- ▶ 1. Homework: assigned in 1. lecture, due before 2. lecture
- ▶ 2. Homework: assigned in 2. lecture, due before 3. lecture
- ▶ 3. Homework: assigned in 3. lecture, due before 5. lecture
- ▶ 4. Homework: assigned in 5. lecture, due before 7. lecture
- Final Project: assigned in 7. lecture, due by June 7.

Grading

Grading contributes 1/3 to the overall grade ('Applied Theory') and is based on three components

- ► Active participation in class (20%)
- ▶ Home exercises (in groups of 2-3 persons) (30%)
- ▶ Final project (in groups of 2-3 persons) (50%)

Tentative final project: A thorough calibration of the presented Auerbach-Kotlikoff model to an EU country of your choice. Simulation and interpretation of some defined reforms.

イロン 不得 とうき とうせい ほう

Outline

Introduction

Solving Deterministic Dynamic Perfect Foresight Models

A Simple Ramsey Model

Implementation on the PC

イロン イボン イモン イモン 三日

Solving Deterministic Dynamic Perfect Foresight Models

Principle challenge is the computation of the transition:

- An agent's decision depends on her own future decisions as well as on future decisions of other agents (through prices!)
- Agents have to make time-consistent optimal decisions, i.e. ex-post they must not want to alter their choices (as they would with adaptive expectations, i.e. expectations based on the past)

Solution is a **path of prices** for all *n* markets under the condition that agents' **expectations are fully consistent** with the realizations.

Two options:

- One shot approach: Stack all equilibrium conditions of all periods together (including the time-consistency conditions) and solve for a path of prices for all markets in one go (using a standard numerical root finding algorithm)
- Split the problem in subproblems which is a more robust approach especially for large scale problems.

Fair Taylor algorithm 1/3

The **key for option 2** is to **separate** the tasks of finding market clearing prices for all periods and establishing time-consistency of agents' expectations. A prerequisite is that the **characterization of the solution** can be formulated in a **recursive way** (i.e. a system of first-order difference equations).

- ► We differentiate between:
 - A set of prices p
 - ► A set of predetermined, **backward looking** variables *B*, like the capital stock.
 - A set of **forward looking** variables *F*, like future wages or profits.
 - ► A set of **parameters** Z, like utility parameters, tax rates, etc.
- ▶ Define a **temporary equilibrium** in *t* as a price vector p_t which for a given guess about the foresight variables $F_{t+1|t}$ sets all excess demands to zero, i.e. $\zeta_n(p_t, B_t, F_{t+1|t}, Z_t) = 0, \forall n$.

<ロト 4月 ト 4 日 ト 4 日 ト 日 - 9 0 0 0</p>

Fair Taylor algorithm 2/3

Solving for all temporary equilibria from t = 1 to t = T - 1 leaves us with an updated guess matrix, $\Lambda(F^i)$. In the **Fair-Taylor algorithm** the guess is updated according to

$$F^{i+1} = \psi \Lambda \left(F^i
ight) + (1 - \psi) F^i, \quad \psi \in (0, 1]$$

until convergence, i.e. $d(F^{i+1}, F^i) < \epsilon$.

Philip Schuster, FISK/OeNB

Fair Taylor algorithm 3/3

The steps of a full program for computing a transition path:

- 1. load model parameters
- 2. calibrate the model
- compute the Jacobian of the system Λ(·) (only necessary if generalized version of Fair-Taylor algorithm is used)
- 4. compute the **initial steady state** at t = 1
- 5. enter a **shock** to system, e.g. a policy reform
- 6. compute the **final steady state** at t = T
- 7. solve for the transition path
 - a) make a **guess** for *F*
 - b) compute a **path of temporary equilibria** starting from t = 1 to t = T 1
 - c) **update** the guess for F
 - d) repeat steps b) to c) until convergence

<ロ> <用> <用> < => < => < => < => <000</p>

Outline

Introduction

Solving Deterministic Dynamic Perfect Foresight Models

A Simple Ramsey Model

Implementation on the PC

イロン イボン イモン イモン 三日

Assumptions

To illustrate the solution algorithm we choose a simple Ramsey model with the following **assumptions**

- Single country, closed economy.
- Log felicity.
- Exogenous labor supply.
- Single representative firm owned by infinitely-lived representative household.
- ▶ 3 markets: homogenous good (numéraire), labor, and assets.

Household problem 1/2

$$U(A_t) = \max_{C_t} u(C_t) + \beta U(A_{t+1}), \quad \text{s.t.}$$
$$A_{t+1} = R_{t+1} [A_t + w_t L_0 - C_t]$$

where $R_{t+1} = 1 + r_{t+1}$. Note timing convention: Decisions and flows at the **beginning of the period**. Define the shadow price of assets as $\lambda_t = U'(A_t)$ then the **optimality** and **envelope** conditions are:

$$C_t: u'(C_t) = \beta \lambda_{t+1} R_{t+1}$$
$$A_t: \lambda_t = \beta \lambda_{t+1} R_{t+1}$$

Hence, the Euler equation (for log felicity) is

$$u'(C_t) = \beta R_{t+1} u'(C_{t+1}) \quad \Rightarrow \quad C_{t+1} = \beta R_{t+1} C_t$$

<ロト 4月 ト 4 日 ト 4 日 ト 日 - 9 0 0 0</p>

Household problem 2/2

Recursively insert to rewrite the **budget constraint** as

$$A_{t} = C_{t} - w_{t}L_{0} + \frac{1}{R_{t+1}} \Big[C_{t+1} - w_{t+1}L_{0} + \frac{1}{R_{t+2}} \Big[C_{t+2} - w_{t+2}L_{0} + \dots \Big]$$

$$\Leftrightarrow \mathcal{W}_{t} = A_{t} + H_{t} \quad \text{where}$$

$$\mathcal{W}_{t} = C_{t} + \frac{1}{R_{t+1}} \Big[C_{t+1} + \frac{1}{R_{t+2}} \Big[C_{t+2} + \dots \\ H_{t} = w_{t} L_{0} + \frac{1}{R_{t+1}} \Big[w_{t+1} L_{0} + \frac{1}{R_{t+2}} \Big[w_{t+2} L_{0} + \dots \\ = w_{t} L_{0} + \frac{H_{t+1}}{R_{t+1}} \Big]$$

Insert the **Euler equation** in the definition of \mathcal{W}_t

$$\mathcal{W}_t = C_t + \frac{1}{R_{t+1}} \Big[C_t \beta R_{t+1} + \frac{1}{R_{t+2}} \Big[C_t \beta^2 R_{t+1} R_{t+2} + \dots \Big]$$
$$\mathcal{W}_t = C_t \cdot \sum_{s=t}^{\infty} \beta^{s-t} = C_t \cdot \Omega_t = C_t \cdot \frac{1}{1-\beta}.$$

Hence, the consumption function is

$$C_t = \Omega_t^{-1} (A_t + H_t).$$

Philip Schuster, FISK/OeNB

GE Policy Analysis - Lecture 1

17 / 22

Firm problem 1/2

Maximize **firm value** (present value profits *V*):

$$\begin{split} V(K_t) &= \max_{l_t, L_t^D} \ \chi_t + \frac{V(K_{t+1})}{R_{t+1}}, \quad \text{s.t.} \\ \chi_t &= Y_t - w_t L_t^D - I_t \qquad (\text{per-period profits} = \text{dividend}) \\ Y_t &= f(K_t, L_t^D) \qquad (\text{hd1 production function}) \\ K_{t+1} &= (1 - \delta^K) K_t + I_t \qquad (\text{capital law of motion}) \end{split}$$

Define the shadow price of capital as $q_t = V'(K_t)$ then the two **optimality** and the **envelope** conditions are:

$$egin{aligned} & I_t: & q_{t+1} = R_{t+1} \ & L^D_t: & Y_{L^D_t} = w_t \ & \mathcal{K}_t: & q_t = Y_{\mathcal{K}_t} + rac{q_{t+1}}{R_{t+1}}(1-\delta^{\mathcal{K}}) \end{aligned}$$

Philip Schuster, FISK/OeNB

<□▶ <□▶ < □▶ < □▶ < □▶ = □ ○ ○ ○

Firm problem 2/2

Theorem

Hayashi's theorem. Firm value and capital stock are related through Tobin's-q

$$q_t K_t = V_t, \quad \forall t$$

Proof

See manuscript.

Combine Hayashi's theorem with the law of motion and the optimality condition for investment to get a **relationship of investments and future profits**

$$I_t = rac{V_{t+1}}{R_{t+1}} - (1-\delta^{\mathcal{K}})\mathcal{K}_t$$

Temporary Equilibrium

In period t we know

- ► all parameters
- predetermined variable: K_t.
- guesses for forward looking variables: H_{t+1} and V_{t+1} .

Three markets have to clear: Labor $(L_t^D = L_0)$, assets $(A_t = V_t)$ and goods $(Y_t = C_t + I_t)$.

1.
$$L_t^D = L_0$$
 \Rightarrow w_t
2. $I_t = \frac{V_{t+1}}{R_{t+1}} - (1 - \delta^K)K_t$ \Rightarrow V_t, K_{t+1}
3. $H_t = w_t L_0 + \frac{H_{t+1}}{R_{t+1}}$ and $A_t = V_t$ \Rightarrow C_t
4. $Y_t = C_t + I_t$ \Rightarrow R_{t+1}

 R_{t+1} is found numerically (Ramsey) or using some algebra analytically (Ramsey_simple).

イロト 不得 トイヨト イヨト ニヨー

Outline

Introduction

Solving Deterministic Dynamic Perfect Foresight Models

A Simple Ramsey Model

Implementation on the PC

イロン イボン イモン イモン 三日

Implementation on the PC

Some principle **notation**: A calibration value of variable X is scalar X0. The time vector of X from t = 1 to t = T is a row vector X.

Foresight variables: H and V, Predetermined: K

- ► We discuss code implementations: Ramsey and Ramsey_simple.
- We walk through all functions step by step.
- ▶ We look at 2 simple reforms:
 - $1.\,$ a negative shock to the capital stock and
 - 2. an exogenous increase in labor supply

and interpret the results.

Home exercises due before lecture 2: Ex. 2 and 3.