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1 Introduction

Ever since the seminal work by Baily (1978) the literature has studied questions of opti-

mal unemployment benefits (UB) in frameworks that allow a trade-off between reduced

incentives to search and gains from insurance. While many extensions and related issues1

like optimal duration dependence (e.g. Hopenhayn and Nicolini, 1997 and Shimer and

Werning, 2008) or liquidity concerns (Chetty, 2008) have been addressed, surprisingly

the question of how to set UB optimally over the business cycle has only very recently

sparked the interest of economists. Moyen and Stähler (2009) and Andersen and Svarer

(2010) show that UB should be counter-cyclical if the government faces an intertemporal

budget constraint in order to help workers to smooth consumption over the cycle. Many

papers like Kiley (2003), Sánchez (2008), Kroft and Notowidigdo (2011) and Schmieder

et al. (2011) emphasize a different argument. UB generosity should be counter-cyclical

if the disincentive problem is less severe in downturns. Landais et al. (2010) provide a

theoretical reason for such a mechanism. They also derive counter-cyclical optimal UB by

arguing that the negative within-group search externality is stronger in bad times, i.e. the

own search is more harmful to other searchers if the market is tight or jobs are rationed.

This implies that from a social point of view, there is too much search in bad times and

UB should be more generous in recessions. This search correcting function of UB will

be refer to as the Pigouvian role. This additional congestion effect is not present in the

canonical Diamond-Mortensen-Pissarides (DMP) model. Landais et al. (2010) introduce

it by assuming decreasing marginal product of labor and sticky wages which generates

’job rationing’2 and excessive search in bad times. While the principle economic intuition

is very appealing this framework might be subject to the ’Pissarides (2009)-critique’: Al-

though a high degree of wage stickiness is observed during employment spells, ’outside’

wages for new employees, which matter for job creation, vary almost one for one with

productivity as given by standard Nash bargaining.

Without running afoul of the ’Pissarides-critique’, this paper provides an alternative the-

oretical motivation for state dependent variation in the extend of search externalities.

This is achieved by allowing for non-constant returns to scale in matching. Hence, in bad

times the labor market does not only experience lower productivity but also more (or

less) congestion than is socially optimal due to changes in employment levels depending

on whether returns to scale are decreasing (or increasing). This change in congestion is

symmetric for both workers and firms in contrast to the typical search externalities that

are negative within the groups of workers or firms but positive between them. Keller

1See Fredriksson and Holmlund (2006) for a survey.
2See Michaillat (2012) for details.
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et al. (2010) established that efficiency can be restored by an employment tax (subsidy) if

returns are decreasing (increasing). This is shown by resorting to an abstract proportional

match surplus tax/subsidy. I will show that such a tax/subsidy is not at the disposal of

a policy maker as it cannot be mimicked by any proportional taxation or subsidization of

economic flows3. Hence, any efficient policy has to be a function of the match surplus and

therefore of the business cycle. I establish that UB have to be set pro-cyclically (counter-

cyclically) if the matching function exhibits decreasing (increasing) returns to scale even

if workers are risk-neutral which isolates the Pigouvian role of UB from their function of

insurance provision.4

The existing literature almost exclusively used constant returns to matching.5 Typical ar-

guments brought up in favor of using constant returns to scale specifications are: analytic

simplicity, consistency with a balanced growth path and empirical support. I will shortly

comment on all these points. Using constant returns typically reduces the dimensionality

of the matching process by one and makes equilibrium recursive and easily tractable. This

is a fair argument and its validity obviously depends on the reduction in complexity one

is willing to make and that seems to be appropriate for a given problem. The argument

that only constant returns to scale are consistent with a balanced growth path cannot

be supported unreservedly. The argument is certainly valid with respect to population

or labor force growth that will lead to different growth rates of total output depending

on the returns to scale assumption. However, non-constant returns to scale matching

functions, as presented in this paper, are perfectly in line with a balanced growth path

concerning exogenous technology growth. I will now turn to the question of empirical

evidence. Probably the most comprehensive treatment6 is the meta study by Petron-

golo and Pissarides (2001) which is often used as a reference to justify constant returns

to scale. Table 1.1 reproduces the unrestricted estimates for the matching elasticity of

unemployment (L − N) and vacancies (V ) for the studies mentioned in Petrongolo and

Pissarides (2001) that explicitly test for constant returns to scale. By inspection of this

table it seems hard to claim that there is strong evidence for constant returns to scale of

the matching function. Anderson and Burgess (2000) for the United States, Layard et al.

(1991), Pissarides (1986) and Coles and Smith (1996) for the United Kingdom, and van

3Except for employment no other stocks are present in the model.
4Some authors like Marimon and Zilibotti (1999), Acemoglu and Shimer (2000) and Acemoglu (2001)

stress an additional function of UB, also independent of the insurance provision argument. UB gives
workers the time to look for more suitable jobs which increases productivity. As jobs are homogeneous
in my model this function will not play a role.

5Notable exceptions are Diamond (1982), Pissarides (1984), Howitt and McAfee (1987) and Hyde
(1997). Keller et al. (2010) provide a comprehensive summary of these papers.

6Another exhaustive summary of empirical results concerning the matching function is presented by
Broersma and van Ours (1999).
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Ours (1991) for the Netherlands support constant returns to scale. In contrast Warren

(1996) and Blanchard and Diamond (1991) for the United States, Yashiv (2000) for Israel,

Kangasharju et al. (2005) for Finland and Münich et al. (1999) for the Czech Republic

find increasing returns. Decreasing returns are supported by Burda and Wyplosz (1994)

for France, Germany, Spain and the United Kingdom, by Berman (1997) for Israel, by

Burgess and Profit (2001) for the United Kingdom and by Fahr and Sunde (2004) for

Germany.

Table 1.1: Empirical evidence on matching elasticities

Sample ln(L−N) ln(V ) crts test

Pissarides (1986) UK - - 3
Layard et al. (1991) UK - - 3
Bergman (1997) Israel 0.29 0.39 5
Burda and France 0.52 0.09 5

Wyplosz (1993) Germany 0.68 0.27 5
Spain 0.12 0.14 5
UK 0.67 0.22 5

Yashiv (2000) Israel 0.49 0.87 5
Warren (1996) USA sum 1.33 5
Anderson and USA: All new hires 0.43 0.81 3

Burgees (2000) USA: previously not employed 0.39 0.75 3
USA: previously employed 0.54 0.87 3

Note: Reproduced from Pretongolo and Pissarides (2001). Only studies with tests for constant
returns to scale (crts) are included. The tests are reported at a 10%-level. L−N and V denote
number of unemployed and vacancies.

Fahr and Sunde (2004) further estimate matching elasticities for different occupations and

find substantial heterogeneity at this disaggregate level. Crafts and technical occupations

seem to exhibit increasing returns while industrial, white collar and social occupations

are related with decreasing returns. This result suggests that policy implications might

vary considerably between groups of occupations. Broersma and van Ours (1999) and

Sunde (2007) argue that estimates concerning the returns to scale can be severely biased

by neglecting unobserved search intensity and on-the-job search. While former can be

corrected relatively easy by making careful distinctions between ’conditional’ and ’uncon-

ditional’ matching functions7 when relating empirical estimates to the theoretical model,

correcting for the latter is less trivial and will not be attempted in this paper.

The aggregate matching function is usually used as a ’black box’ tool. There have been

several attempts of microfounding the matching function. Non of them suggests a reg-

ularity such that the underlying frictions can only result in a constant returns to scale

specification. One of the first microfoundations is due to Butters (1977) and Hall (1979)

7I use the terminology as in Stevens (2007).
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and reflects a coordination failure by mimicking the problem of randomly placing balls in

urns. They derive the following matching functionM = V
[
1− (1− 1/V )L−N

]
which has

decreasing returns and only approximately converges to a constant returns to scale spec-

ification for large V , namely M = V (1 − e−(L−N)/V ). In an extension, Calvó-Armengol

and Zenou (2005) microfound matching in a framework where workers are embedded in

a social network and can find vacancies also through word-of-mouth. They show that

the network size plays a crucial role for the efficiency of their matching process. On one

hand, if the network size increases, the coordination failure shrinks because unemployed

workers potentially learn about more job opportunities. On the other hand, coordination

failure increases as it becomes more likely that a single worker receives several job offers

at the same time. First, the positive effect dominates, then the negative effect is more

important. Hence, for small networks the returns to scale are increasing while they are

decreasing for oversaturated networks. Other microfoundations focus on mismatch of the

form that workers and vacancies are randomly assigned to submarkets ` = 1, 2, . . . that

clear, i.e. M` = min {L` −N`, V`}, but where workers and vacancies are immobile and

cannot (or only slowly) move to another submarket once they found themselves on the

long side of their current submarket. This type of friction has been discussed in the lit-

erature since the 1970s, see for example Hansen (1970). More recent papers are provided

by Lagos (2000) and Shimer (2005b). Latter derives an aggregate matching function that

is increasing in market size, i.e. the measures of workers and vacancies in each submar-

ket, although in a simulation exercise the matching function is virtually indistinguishable

from a Cobb-Douglas specification. Stevens (2007) models the underlying friction as an

explicit time consuming process of searching and evaluating potential matches, as they

are heterogeneous, in form of a telephone-line-queuing model. She derives the following

aggregate matching function8 M = Paccept · (L−N)V
L−N+V

, where Paccept is the probability that

a job offer is accepted. Observe that the second term is homogeneous of degree one, but

the matching function shares this property only if Paccept is independent of L−N and V

in levels. It is easy to generate a scenario where this is not the case, e.g. the existence of

a simple welfare state where employed workers pay taxes and unemployed workers receive

tax-financed benefits introduces level-dependence in job acceptance rates.

To summarize, first, there are no fundamental reasons derived from explicit microfoun-

dation of why the matching function should exhibit constant returns to scale. Second, as

the empirical evidence concerning the returns to scale of the matching process seems to

be rather inconclusive and mixed with a high degree of country, regional and occupation

specific heterogeneity, it seems reasonable to allow for a more flexible specification of the

matching function in the theoretical model, as I will do in this paper.

8I normalized search costs to 1 without loss of generality for my argumentation.
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The paper further relates to the strand of the literature that - in contrast to Chetty

(2006a) - has focused on the insurance efficiency trade-off in general equilibrium settings

where job finding probabilities are influenced by firms’ behavior through vacancy creation

and wage bargaining. Cahuc and Lehmann (2000), Fredriksson and Holmlund (2001),

Coles and Masters (2006), Lehmann and van der Linden (2007), and Coles (2008) look

at optimal policy in steady state while Mitman and Rabinovich (2011) also take business

cycle dynamics into account. Jung and Kuester (2011) extend their analysis by looking

at a broader set of instruments and find that all, a recruitment subsidy, a firing tax and

unemployment benefits have to rise in recession. However, none of those papers deals

with the Pigouvian role of UB to correct for inefficient levels of aggregate search intensity

as in this paper.

Probably the closest related study is the paper by Keller et al. (2010). They introduce a

flexible matching function nesting different returns to scale specifications and derive the

mentioned efficiency results which is also used in this paper. However, the main focus

of their paper is not the implementation of an optimal allocation but rather market size

effects introduced through non-constant returns to scale when labor force participation is

endogenous. They further emphasize the different dynamic behavior of job finding rates

in their model in contrast to the canonical DMP model where job finding probabilities

directly jump to the new equilibrium values after a shock.

The paper is organized as follows. Section 2 extends the canonical DMP model such that

it additionally allows for non-constant returns to scale in matching, decreasing returns

to labor in production, and sticky wages. It can therefore nest different combinations

of assumptions. Section 3 derives equilibrium while section 4 characterizes the social

optimal allocation and possible implementations. Section 5 adds risk-aversion to analyze

the interaction of the insurance and the externality correction purpose of UB. The section

closes with a small numerical illustration. Section 6 concludes.

2 Model description

The model is set up in discrete time and I will focus exclusively on its comparative static

behavior at the steady state.9 All values are denoted at end of period. The model is

9As labor productivity is highly persistent and worker flows are large for the United States, for which I
will calibrate the numerical example, looking at elasticities at the deterministic steady state is a legitimate
approximation. I will comment on the issue of intertemporal insurance in case of risk-averse workers in
section 5.
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based on the simple, canonical DMP model as presented in Pissarides (2000).10

2.1 Matching technology

In contrast to the textbook model I allow for the following general form of the matching

function similar to Keller et al. (2010). The number of total matches M is

M = Φ(m(s(L−N), V )) = Φ(m(L · su, L · v)), (2.1)

where L denotes exogenously fixed labor force, V is the number of vacancies, N is the

number of employees, such that L − N denotes the number of unemployed. u is the

unemployment rate, v is the vacancy rate and s denotes average search effort. I interpret

m as amount of aggregate search activity.11 m(·, ·) is assumed to be increasing in both

arguments and homogeneous of degree one. Because of that one can rewriteM = Φ(Lu ·
m(s, θ)), where θ denotes labor market tightness of form θ ≡ V

L−N = v
u
. The elasticity12

of m w.r.t. u and v is denoted εmu ≡ η and εmv ≡ 1 − η, respectively, and assumed to

be constant. The function Φ(x) for some x > 0 is strictly increasing and has a constant

elasticity denoted by εΦx ≡ ξ. If ξ = 1 one is back in the canonical model with constant

returns to scale. ξ < (>) 1 implies decreasing (increasing) returns. Consequently, the

elasticities ofM w.r.t. u and v are εMu = η · ξ ≡ ηu and εMv = (1−η) · ξ ≡ ηv, respectively.

Although, I allow for increasing returns to scale I rule out increasing returns to every single

factor, i.e. ηu, ηv ∈ (0, 1).13 Hence, M is concave in both u and v. The following further

conditions have to be fulfilled by M by assumption: M ≤ min {L−N, V }, M = 0 if

either L = N or V = 0 and L >> 1 such that L ·m(su, v) > 1. Define the following

qw(si, s, u, θ) = si
M
Lsu

, (2.2)

as the matching probability for worker i where the matching probability per unit of search
M
Lsu

is multiplied by the worker’s individual search effort si. As workers are homogeneous

they will always pick the same search effort in equilibrium, i.e. si = s, in which case every

worker faces the following probability

qw(s, u, θ) =
Φ(Lu ·m(s, θ))

Lu
, (2.3)

10I use almost the same notation. The bargaining power of the worker is denoted by ω and the
probability of an exogenous split is πx.

11’Aggregate’ refers to all workers and all firms.
12Throughout this paper elasticities of some variable y w.r.t. some variable x are denoted εyx ≡ ∂y

∂x · xy .
13This is supported by empirical evidence, see Petrongolo and Pissarides (2001), and furthermore has

the important theoretical implication that the negative within group congestion externalities are still
present.
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while the matching probability of a firm is simply qf (s, u, θ) ≡ qw(s,u,θ)
θ

. Note that in this

general formulation qw can also depend on the level of unemployment not only relative

unemployment reflected by the labor market tightness like in the canonical model. Four

important derived elasticities14 that will be used extensively are

ε
qwi
si |si=s = 1 > 0, εq

f

s = ηu > 0, εq
w

θ = ηv > 0, εq
w

u = ξ − 1. (2.4)

Note that the sign of εq
w

u depends on our returns to scale assumption. If returns to scale

are increasing, i.e. ξ > 1, then there is an additional positive level effect of the number of

searches on the efficiency of matching. In a business cycle context this would imply that

while the direct effect of lower factor productivity clearly increases unemployment the

effect is dampened by the fact that for a higher number of searchers matching becomes

more effective. On the other hand if ξ < 1 the direct effect is enforced as matching

becomes less effective if u is high. The job finding rate reacts as follows to the degree of

returns to scale and the market size

εq
w

ξ = ξ · ln(L ·m(su, v)) > 0, εq
w

L = ξ − 1. (2.5)

Clearly, unless ξ 6= 1 the job finding rate is influenced by the market size. Absolute

employment N evolves as follows

N ′ =M+ (1− πx)N. (2.6)

Next period’s employment N ′ is simply the current stock minus separations plus the

number of new matches. From a firm’s perspective15 this law of motion can be rewritten

as

N ′ = qfV + (1− πx)N. (2.7)

From the perspective of the workers the law is written as N ′ = qw · (L−N) + (1− πx)N .

Evaluating in steady state gives the standard Beveridge curve,

N = L(1− u) =
qw

πx + qw
L, L−N = Lu =

πx

πx + qw
L. (2.8)

2.2 Representative firm

There is a single, competitive, representative firm with the following production function

Y = aF (N) with F (N) = Nα, 0 < α ≤ 1. (2.9)

14See the appendix for the derivations.
15As the representative firm will take matching probabilities as given it has to maximize profits subject

to (2.7) instead of (2.6). See section 2.2.
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Hence, the production function nests constant as well as decreasing16 marginal product of

labor. The parameter a is interpreted as an exogenous productivity shift parameter that

will capture the state of the economy along the business cycle and will later be used for

comparative static exercises. Although production is handled by a single firm, the firm

is assumed to be naive in the following respects to capture important characteristics of a

competitive market with a large number of participants.

Assumption 2.1. Naive representative firm: (a) The firm takes the matching prob-

ability qf as given. (b) The firm assumes ∂w
∂N

= 0.

Assumption 2.1(a) implies that the firm does not internalize the typical search externalities

that are present in the canonical framework. Assumption 2.1(b) states that the firm does

not realize that it can influence the wage (if possible) by deciding how many vacancies to

post. This is not an issue if wages are exogenous, or if they are bargained but marginal

returns to labor are constant, i.e. α = 1. For the case of bargained wages and decreasing

marginal returns to labor, wages depend on N via the marginal product. Stole and

Zwiebel (1996) showed that in a setting where the firm treats every worker as being

marginal during the bargaining it would strategically over-hire to compress wages.17 I

abstract from this strategic component by assuming the firm to be naive in that respect.

The firm’s discounted profits for a given number of workers N can be recursively written

as

Π(N) = max
V

[aF (N)− wN − cV + Π(N ′)]
1

1 + r
, s.t. (2.7). (2.10)

Define J ≡ Π′(N) as the marginal value of an additionally filled position for the firm.

The optimality condition reads

− c+ Jqf = 0 ⇒ J =
cθ

qw
. (2.11)

The envelope condition implies that

J =

[
aF ′(N)− w −N ∂w

∂N
+ J(1− πx)

]
1

1 + r
. (2.12)

By assumption 2.1(b) one can rewrite the envelope condition as

J =
y − w
r + πx

, (2.13)

16A typical justification is that the capital stock is fixed or adjusts only sluggishly in the short run.
Hence, labor reallocates faster than capital.

17Cahuc and Wasmer (2001) show that this result disappears if the production function has decreasing
returns in both, labor and capital, but constant returns to scale.
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where I defined output of a marginal worker as y ≡ aF ′(N) = aF ′(L(1−u)).18 Combining

the optimality and the envelope condition gives the typical job creation (JC) condition

that equates benefits and costs of marginally increasing N , i.e.

y − w
r + πx

=
cθ

qw
. (2.14)

2.3 Workers

Workers are assumed to be risk-neutral such that one can disentangle the welfare effect

of UB because of ’search correction’ in contrast to insurance.19 A worker i can be in two

discrete states: employed or unemployed. The corresponding values are denoted Wi and

Ui,

Ui = max
si

[zi + qwi Wi + (1− qwi )Ui]
1

1 + r
, (2.15)

where the instantaneous value of unemployment zi ≡ h+b−k(si) is home production plus

UB minus search effort in monetary terms. The effort function has the usual properties,

i.e. k′(·) > 0 and k′′(·) > 0. The value of being employed is given by

Wi = [wi − T + πxUi + (1− πx)Wi]
1

1 + r
. (2.16)

Here T denotes a tax on employed workers which will finance UB for the unemployed.

Maximization over search effort while taking all market variables as given implies the

following first-order condition for optimal search

∂qwi
∂si

(Wi − Ui) = k′(si), (2.17)

which equates marginal benefits and costs of an additional unit of individual search effort.

As mentioned before all workers are identical which implies that in equilibrium all workers

choose the same search intensity, hence

W − U =
sk′(s)

qw
. (2.18)

Combine (2.15), (2.16) and (2.18) to get

W − U =
w − T − z − sk′(s)

r + πx
. (2.19)

18Clearly, in the case of constant returns to labor, α = 1, marginal output is equal to the exogenous
productivity parameter, i.e. y = a.

19This assumption is relaxed in section 5.
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Inserting this expression in (2.18) gives the typical job search (JS) condition which reveals

that search effort increases with the difference of wage and unemployment income

w − T − z − sk′(s)
r + πx

=
sk′(s)

qw
. (2.20)

2.4 Wage determination

I consider two wage determination rules. First, like in Landais et al. (2010) I allow for

simple sticky wages of form

sticky wage: w = w0a
γ, 0 < γ < 1. (2.21)

In this case the elasticity of the wage w.r.t. productivity, εwa = γ, is less than 1. Second,

I allow for bargained wages subject to the following sharing rule20

W − U =
ω

1− ωJ. (2.22)

Inserting (2.13) and (2.19) in (2.22) and solving gives the following wage schedule

flexible wage: w = (1− ω) [z + T + sk′(s)] + ωy, (2.23)

with an elasticity of the wage w.r.t. productivity of εwa ≈ 0.98 for a reasonable calibration21.

2.5 Surplus taxation

This short section explains how a proportional surplus tax t is introduced to the model

for the regime of flexible wages. This tax is admittedly rather abstract but it will help

in understanding the principle role optimal policy will have to play. Observe that in the

case of no such tax the surplus is S ≡ W − U + J . Simply add (2.13) to (2.19) to arrive

at22

S =

[
y − T − z − sk′(s)

r + πx

]
. (2.24)

Now a surplus tax is introduced such that only (1− t)S is shared among the parties, i.e.

(1− t)S ≡ W − U + J . Hence, although the sharing rule (2.22) is still valid the values J

20For risk-neutral workers this coincides with the first-order condition of a typical Nash bargaining
problem, i.e. w = argmax(W − U)ωJ1−ω.

21This value is stated in Pissarides (2009) and confirmed in the numerical section of this paper.
22Note that if one assumed that k(·) was of simply iso-elastic form with constant elasticity εks = ν > 1

one could rewrite the term k(s)− sk′(s) as (1− ν)k(s). Consequently, z + sk′(s) = b+ h+ (ν − 1)k(s).
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and W − U are now given by

J = (1− ω)(1− t)S ≡ ωfS, W − U = ω(1− t)S ≡ ωwS, (2.25)

where ωf and ωw are the effective bargaining powers for firm and worker. Hence, optimal

job creation and optimal job search effort are characterized by the following two conditions

ωfS =
cθ

qw
, ωwS =

sk′(s)

qw
. (2.26)

The next section will describe this in more detail.

3 Equilibrium

In addition to the derived conditions also the government’s budget has to be balanced,

therefore the following has to hold

NT = (L−N)b ⇔ T =
u

1− ub. (3.1)

One can now simply eliminate T in all corresponding equations. Further, observe that I

excluded the surplus tax from the government’s budget, i.e. I assume it to be uncompen-

sated. This has the following reason. In section 4 I argue that such a tax is not at the

disposal of the policy maker and cannot be mimicked by a set of instruments (even if they

are uncompensated as well). The tax will just help to characterize optimality. For the im-

plementation of an optimal allocation it will not play a role. Equilibrium 〈θ∗, s∗, w∗, u∗〉
is given by the simultaneous solution to the job creation condition (2.14), the optimal

search condition (2.20), either one of the two wage conditions (2.21) or (2.23), and the

Beveridge curve (2.8). Observe that one can reduce the system further by eliminating the

wage. Hence, equilibrium is given by the vector 〈θ∗, s∗, u∗〉 that solves

(a) for sticky wages :

JC-wage :
y − w0a

γ

r + πx
=

cθ

qw(s, u, θ)
, (3.2)

JS-wage :
w0a

γ − h− b/(1− u) + k(s)− sk′(s)
r + πx

=
sk′(s)

qw(s, u, θ)
, (3.3)
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(b) for flexible wages :

JC-wage : ωf
[
y − h− b/(1− u) + k(s)− sk′(s)

r + πx

]
=

cθ

qw(s, u, θ)
, (3.4)

JS-wage : ωw
[
y − h− b/(1− u) + k(s)− sk′(s)

r + πx

]
=

sk′(s)

qw(s, u, θ)
, (3.5)

and for both :

BC :
πx

πx + qw(s, u, θ)
= u. (3.6)

If one combines both optimality conditions from the flexible wage regime one arrives at a

convenient alternative condition for (3.5)

sk′(s) =
ω

1− ωcθ. (3.7)

This can alternatively be derived by combining (2.18), (2.22) and (2.11)

sk′(s) = qw(W − U) =
ω

1− ωq
wJ =

ω

1− ωcθ. (3.8)

The alternative condition (3.7) also allows us to write the wage equation in a slightly

different way

w = (1− ω) [z + T ] + ω(y + cθ), (3.9)

which is well-known from Pissarides (2000).

4 Social optimum and implementation by benefits

This section derives the optimal allocation a social planner would choose.23 I will then

discuss possible decentralizations of the allocation. As workers are risk-neutral, welfare

and output maximization coincide24. The social planner faces the following recursive

23In the canonical model, an equilibrium is unique if it exists. Sufficient conditions are constant
returns to scale in the matching function and linear search technology, see Pissarides (2000). Only the
second condition is fulfilled in the present model. Diamond (1982) and Diamond (1984) established that
increasing returns in the matching function could generate multiple equilibria. Pissarides (1986) analyzes
uniqueness and multiplicity of equilibria in a more closely related model. It is important to realize that
a social planner subject to the same matching technology faces the same indeterminacy concerning the
allocation compared to the decentralized case. Obviously, he will pick the most efficient equilibrium. For
the theoretical model I assume that agents can coordinate to do the same, i.e. I always focus on the most
efficient equilibrium. Appendix C establishes conditions for multiplicity and uniqueness. I also find that
increasing returns are necessary. However, in the numerical part multiplicity of equilibria was not an
issue.

24Simply insert the resource constraint aF (N)− cV = Nw+ Π, where Π denotes aggregate profits, to
derive the utilitarian per-period welfare measure Nw + (L−N) [h− k(s)] + Π.
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problem

Ω(N) = max
V,s

[aF (N) + (L−N) [h− k(s)]− cV + Ω(N ′)]
1

1 + r
, (4.1)

subject to (2.6). Note that the social planner in contrast to the agents does not take

matching probabilities as given.

Let SS ≡ Ω′(N) be the social value of filling an additional job, i.e. the social match

surplus. Then the optimality conditions for V and s and the envelope condition for N

evaluated in steady state are

V : − c+ SS · ∂M
∂V

= 0 (4.2)

s : − k′(s)(L−N) + SS · ∂M
∂s

= 0 (4.3)

N : (1 + r)SS = aF ′(N)− [h− k(s)] + SS · ∂M
∂N

+ (1− πx)SS. (4.4)

I use the following derivations

∂M
∂V

= ξ(1− η)qf ,
∂M
∂N

= −ξηqw, ∂M
∂s

= ξη
M
s
, (4.5)

which have to be inserted in (4.2) to (4.4). The first condition states that vacancies should

be created up to the point where the share ηv = (1 − η)ξ of the social value of the job

equals the expected marginal costs of vacancy creation. The second condition implies

that search is optimal if a share ηu = ηξ of the social value of a job equals the workers’

expected marginal search costs. Both can be written as

ηvS
S =

cθ

qw
, ηuS

S =
sk′(s)

qw
. (4.6)

Combine both conditions to get the following simple relation

sk′(s) =
η

1− η cθ. (4.7)

Now combine the third and the second condition to get the social value of a job

SS =
y − [h− k(s)]− sk′(s)

r + πx
. (4.8)

The social surplus is almost identical to the decentralized match surplus. The only dif-

ference is that UB can drive a wedge between them, i.e. SS = S + b/(1−u)
r+πx

. Consequently,
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the two social optimality conditions for vacancy creation and search intensity read

ηv

[
y − [h− k(s)]− sk′(s)

r + πx

]
=
cθ

qw
, (4.9)

ηu

[
y − [h− k(s)]− sk′(s)

r + πx

]
=
sk′(s)

qw
. (4.10)

I will now show how these optimality requirements relate to the decentralized equilibrium

conditions first in a sticky wage environment and then more extensively in the flexible

wage regime.

4.1 Sticky wages and job rationing

The model of Landais et al. (2010) is nested in the specification above for ξ = 1, α < 1 and

using (2.21) as wage equation. They find that even if workers are risk-neutral there is a

’job rationing’ externality implying too much search that should be corrected by a positive

UB level. The idea of ’job rationing’ can be easily explained within the framework of the

presented model. I will focus on the job creation decision and restate the corresponding

condition (3.2)
aF ′(N)− w0a

γ

r + πx
=

c

qf
.

It is useful to look at the limiting case c→ 0 such that posting vacancies is costless and

search frictions vanish in the limit. In the canonical model with constant marginal produc-

tivity, i.e. α = 1, firms would post vacancies ad infinitum such that θ →∞ and matching

from the workers’ perspective would occur instantaneously, i.e. u → 0 and N → L. In

the model of Landais et al. (2010) this is not the case as jobs might be rationed at some

point and no new jobs are created because the marginal product falls below the rigid

wage.25 Clearly, rationing is more likely to occur if factor productivity a is small, i.e. in a

recession. It is easy to see that any additional uncoordinated search effort by the workers

would be socially wasteful in such a situation.

In addition to decreasing returns to labor and wage stickiness there is another important

deviation from the standard model in terms of the welfare measure. Landais et al. (2010)

optimize workers’ welfare (or workers’ expected income in the case of risk-neutrality) but

ignore aggregate profits for the derivation of the optimal UB formula in their stylized

model26. I will show that their results heavily depend on this last assumption. Hence, it

25Actually, even with bargained, flexible wages jobs could be rationed as wages cannot fall below the
workers per-period value of unemployment, while the marginal product can. Still, there is an important
difference as this would be socially efficient rationing because a social planner would never want to
maintain jobs that are less valuable than the value of home production.

26For the numerical simulation of their complex, dynamic model they assume that profits can be taxed
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should come at no surprise that they find that benefits should always be positive as the

positive intergroup externality of workers’ search effort on aggregate profits is ignored. In

contrast, I assume that the social planner takes profits into account and maximizes total

output. Observe that the allocation is efficient if and only if, by chance, the following

conditions holds

1− η =
y − w0a

γ

ΓS
and b = 0, ΓS ≡ [y − (h− k(s))− sk′(s)] . (4.11)

ΓS denotes the social per-period surplus, i.e. SS = ΓS

r+πx
. Equation (4.11) is derived by

comparing (3.2) and (3.3) with (4.9) and (4.10). It basically states the classical Hosios-

condition, namely that the share of the surplus claimed by the firm is equal to the elasticity

of the matching function w.r.t. v. Clearly, the conditions stated in (4.11) differ from those

derived by maximizing only the workers’ expected income and imply that for any values

of a and γ in principle there could be too much or too little unemployment. Further, in

case of failure of the first condition, UB cannot be used to restore efficiency.

The assumption of wage stickiness has been a controversially discussed topic in the macro-

labor literature and while conventional wisdom on wage rigidity is mostly based on time-

series analysis working with aggregate wage levels this view has been recently challenged

by studies looking at individual worker data that allow for an explicit distinction between

wages of new and continuing jobs. Most prominently Pissarides (2009) showed that the

wage rigidity of continuing jobs is irrelevant for the job creation decision of firms as

firms just care about their share of the expected surplus and not about how exactly the

surplus is split in future periods. Indeed, individual-worker studies, like Haefke et al.

(2008), estimate the elasticity of wages for continuing jobs in the range εw
c

a ∈ [0.3, 0.5]

but when they estimate the same elasticity for newly created jobs they find that those

move much stronger with the cycle. Combining their point estimate with a more indirect

estimate by Pissarides (2009) himself gives a range of εw
n

a ∈ [0.9, 1.02]. Recall that

applying the typical bargaining sharing rule results in εwa ≈ 0.98 which is perfectly in line

with the corresponding estimates. As wage stickiness during an employment spell does

not affect the job creation condition, applying the bargaining sharing rule for all jobs

should be preferred over using sticky wage specifications. This basically summarizes the

argument of Pissarides (2009) which I will refer to as the ’Pissarides-critique’ concerning

wage stickiness. Gertler and Trigari (2009) and Blanchard and Gaĺı (2010) responded to

the ’Pissarides-critique’ by arguing that the true elasticity of wages for new jobs w.r.t.

productivity is hard to identify as the high estimates could in principle also stem from

and redistributed. However, it is hard to isolate the exact role of the search correcting effect of the
benefits as the simulations are just carry out for the case of risk-aversion.
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compositional effects as Haefke et al. (2008) did not control for occupational changes27.

Nevertheless, to my knowledge no empirical study has convincingly confirmed real wage

rigidity for newly created jobs which is why I will focus on the flexible wage specification

as recommended by Pissarides (2009).

4.2 Flexible wages and non-constant returns to matching

Let me return to the optimality conditions (4.9) and (4.10). Compare this expressions to

the decentralized conditions for flexible wages (3.4) and (3.5). Both condition pairs differ

w.r.t. two attributes: the size of the surplus and shares of the surplus the firm and the

worker receive. The social and the decentralized surplus just differ by a ’wedge’ created

if b 6= 0, i.e. SS = S + b/(1−u)
r+πx

. The socially optimal shares are influenced by the degree

of returns to scale ξ, while the decentralized shares depend on the surplus tax t. Take

t = b = 0 for the moment. It is obvious that in case of constant returns, i.e. ξ = 1, the

classical Hosios (1990)-condition ω = η = ηu implies efficiency. Now let us assume ξ 6= 1.

The social planner takes congestion effects on the probability of finding a job through

changes in the level of unemployment into account, which is not done by agents in the

decentralized economy who naively treat qw and qf as given. As the classical Hosios-

condition for constant returns to scale is given by ω = η, this parameter constellation will

serve as my benchmark in order to isolate the additional inefficiencies generated by ξ 6= 1.

Similar to Keller et al. (2010) a generalization of the Hosios condition can be formulated

as follows.

Proposition 4.1. Generalized Hosios-condition: In a regime with flexible wages the

allocation is efficient if the effective bargaining powers and the total matching elasticities

coincide, i.e. ωw = ηu and ωf = ηv, and no other policy is in place. Given that the

classical Hosios-condition, i.e. ω = η, is fulfilled, the efficient allocation can be reached by

setting a surplus tax/subsidy t = 1− ξ and b = 0.

Proof. This follows directly from comparing (3.4) and (3.5) with (4.9) and (4.10). Note

that a failure of ω 6= η cannot be corrected by adjusting t as efficiency along the job

creation margin would require t = 1− ξ 1−η
1−ω while optimality along the job search margin

demands t = 1− ξ η
ω

.28

Observe that the generalized Hosios-condition collapses to its classical form if ξ = 1. Given

that ω = η and in absence of any policy instrument one can distinguish three cases. If

ξ = 1 (constant returns) the level of employment is efficient. If ξ < 1 (decreasing returns)

27The argument is that in bad times an architect might be forced to take a low paying job as a cab
driver, while if he found a job in an architectural firm he would have suffered a much smaller than almost
proportional loss due to the fall in aggregate productivity.

28See for example Schuster (2010) for a discussion on how to correct in the case of ω 6= η.
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the level of employment is inefficiently high. If ξ > 1 (increasing returns) the level of

employment is inefficiently low. This implies that with decreasing returns one requires an

implicit employment tax to prevent excessive aggregate search, while in case of increasing

returns one requires an implicit employment subsidy to foster aggregate search. How

should the generalized Hosios-condition be interpreted? Recall that the classical Hosios-

condition finds the optimal trade-off between the positive intergroup and the negative

intragroup externalities. This is done by splitting the match surplus in an optimal way.

If ω > η then workers would search too much while firms would exert too little search

effort. The generalized version of the Hosios-condition in addition gives a formula for

optimal aggregate search. If ξ < 1 then both, workers and firms, would provide too much

search effort from a social perspective. That is why the surplus itself has to shrink in

order to reduce search incentives for all agents. Importantly, this can only be achieved

through policy intervention while a constant returns to scale setting in principle29 allows

equilibrium to be efficient without any intervention. Proposition 4.1 presents results for

an employment tax/subsidy in form of a proportional surplus tax/subsidy as originally

derived by Keller et al. (2010). The idea of a direct surplus tax is admittedly very abstract.

This becomes even more clear with the following proposition.

Proposition 4.2. Impossibility of proportional surplus taxation: There is no

combination of proportional taxes on any economic activity flows that could mimic surplus

taxation of the form (2.26).

The proof is provided in the appendix. I imposed the reasonable assumption that a

government cannot directly tax the match surplus30. Even if it could tax any economic

activity flow like output, wages, benefits, vacancy posting costs, search costs or home pro-

duction, proposition 4.2 states that proportional surplus taxation cannot be implemented.

The intuition is that one would require proportional subsidization of vacancy posting or

marginal search costs on one hand to tax the surplus proportionally while on the other

hand one must not allow for such instruments to prevent distortion of the marginal cost

components on the right hand side of (2.26).31

I have argued that the implementation of an efficient allocation using a proportional

surplus tax/subsidy is impossible as a typical policy maker usually does not have an

instrument like that at his disposal and it cannot be mimicked by other instruments.

Instead of changing the splitting weights of the surplus to achieve proportional surplus

29As the parameters of the classical Hosios-condition, ω and η, are systematically unrelated, efficiency
can only happen by chance and is unlikely to occur.

30The government still has to observe the surplus because optimal benefits will depend on it.
31Note that this result is directly related to the existence of a balanced growth path. Let output, the

value of leisure and all other costs grow at a constant rate g. The factor 1 + g would simply cancel out
in the first-order conditions, leaving the unemployment rate unchanged.
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taxation/subsidization one could directly change the size of the surplus by controlling

the wedge between the social and the decentralized surplus. In this framework this can

be done by setting UB accordingly.32 I still assume ω = η to isolate the additional from

the conventional search externalities. Set t = 0 and subtract (4.9) from (3.4) and solve

for the optimal UB level. Equation (4.12) gives the optimal size of UB in absence of any

insurance motive.33

b = ΓS(1− ξ)(1− u). (4.12)

Observe that this is indeed the optimal level of b as it also implies optimal search intensity.

If ξ = 1 the optimal level of benefits is b = 0. If ξ > 1 it is b < 034 which implies that

otherwise there would be too little search. In case of decreasing returns, ξ < 1, there is

excessive search which requires b > 0. Another important implication of (4.12) is that for

ξ 6= 1 the optimal b has to move proportionally with the surplus itself. The results are

summarized in the following proposition.

Proposition 4.3. Optimal unemployment benefits: The allocation is efficient if

unemployment benefits are set according to (4.12). In case of decreasing (increasing)

returns to scale optimal UB are positive (negative) and rise (fall) with productivity.

The proof is provided in the appendix and simply relies on the trivial property that both

the employment rate 1 − u and the social per-period surplus ΓS are pro-cyclical. The

different cases are illustrated in figure 4.1.

To summarize, if ξ < 1 then b > 0 and db/da > 0 i.e. benefits have to be set pro-

cyclically. On the other hand if ξ > 1 then b < 0 and db/da < 0, i.e. benefits should

be counter-cyclical. The finding of Landais et al. (2010) that benefits should be positive

and counter-cyclical are a mixture of the results from both returns to scale scenarios.

With decreasing returns to scale there is too much aggregate search, hence UB should be

positive like in Landais et al. (2010), but in contrast benefits should rise in good times as

unemployment shrinks which reduces the effectiveness of the matching process. If returns

are increasing, the opposite is true and UB should be counter-cyclical because matching

32In principle any alternative tax that changes the surplus, e.g. an uncompensated output or profit tax,
etc. could be used. However, if they have to compensated by a per-worker tax T they leave the surplus
unchanged as they would just redistribute between the inside options and not between inside and outside
options, as it is the case for per-worker tax-financed UB.

33In the present framework UB are adjusted directly. Appendix section D derives the optimal formula
for the replacement rate.

34Here I assume that the policy maker can set b < 0 i.e. he can tax home production, which is
typically not a feasible option. However, recall that the set-up with risk-neutral workers was done to
simplify the analysis and isolate the Pigouvian role of UB. In a richer model with risk-aversion and
positive unemployment insurance increasing returns to scale would rather imply a reduction in existing
UB instead of negative UB, which is obviously feasible.
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Figure 4.1: Optimal unemployment benefits over the business cycle for different degrees
of returns to scale

b∗
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ξ = 1
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is less effective if the level of unemployment is high, as in Landais et al. (2010), while too

little aggregate search implies a negative optimal level of UB.

5 A numerical example and risk-aversion

This section serves to get an impression of how big the search correction actually has

to be and how this quantitatively relates to the typical insurance provision function. I

will therefore extend the existing model to allow for non-linear utility. Risk-aversion is

introduced by wrapping per-period consumption flows into a felicity function u(·) with

the properties u′(·) > 0 and u′′(·) < 0.35 I assume that utility from consumption and

disutility from search effort are linearly separable. One can write the recursive values of

being unemployed and employed as

Ui = max
si

[u(h+ b)− k(si) + qwi Wi + (1− qwi )Ui]
1

1 + r
, (5.1)

Wi = [u(wi − T ) + πxUi + (1− πx)Wi]
1

1 + r
. (5.2)

It is easy to see that the optimal job search condition is given by

u(w − T )− u(b+ h) + k(s)− sk′(s)
r + πx

=
sk′(s)

qw
. (5.3)

35Note that because of convention I use the notation u(·) for the instantaneous utility function despite
the fact that u also denotes the unemployment rate. The distinction becomes clear from the context.
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For the determination of the wage I will again resort to a simple surplus sharing rule.

W̌ − Ǔ =
ω

1− ωJ. (5.4)

Here W̌ and Ǔ denote the values of working and not working in pure monetary terms.

I assume that utility is non-transferable, i.e. the two parties can only share the surplus

evaluated in monetary terms. See Michau (2011) for more details on this surplus splitting

rule.36 Consequently, the wage equation does not change in comparison to the risk-neutral

case and is again given by (2.23). Therefore also the condition for optimal vacancy

posting is unchanged. Equilibrium is given by the vector 〈θ∗, s∗, w∗, u∗, T ∗〉 that solves

the following system of equations

JC :
y − w
r + πx

=
cθ

qw
, (5.5)

JS :
u(w − T )− u(b+ h) + k(s)− sk′(s)

r + πx
=
sk′(s)

qw
, (5.6)

wage : (1− ω) [z + T − sk′(s)] + ωy = w, (5.7)

government :
u

1− ub = T, (5.8)

BC :
πx

πx + qw
= u. (5.9)

I now characterize the optimal allocation. To simplify the analysis I use α = 1 such

that the representative firm does not make profits. As an implementation of the first

best allocation requires full insurance which is incompatible with bargained wages with

positive bargaining power for the workers I will consequently look for a second best so-

lution. In this case the planner maximizes utilitarian welfare subject not only to the law

of employment but also to the implementability constraints given by the decentralized

equilibrium conditions. For reasons of analytic convenience I will write the corresponding

Bellman equation as a function of the unemployment rate instead of total employment.

The second best optimization problem in recursive form looks as follows

Θ(u) = max
θ,s,b,w,T

[L(1− u) · u(w − T ) + Lu · [u(h+ b)− k(s)] + Θ(u′)]
1

1 + r
,

subject to u′ = (1− qw)u+ πx(1− u), (5.10)

and the system of equilibrium conditions (5.5) to (5.8). As the economic interpretability

of the resulting first-order conditions is rather limited I will illustrate the case of risk-

aversion using a small numerical example.

36A similar result can be derived when using a first-order Taylor approximation of the first-order
condition of an explicit Nash bargaining game.
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5.1 Calibration

First, the following functional forms for the utility function and the search effort function

where chosen

m(su, v) = (su)ηv1−η, (5.11)

Φ(x) =M0x
ξ, (5.12)

k(x) = k0x
ν , ν > 1, (5.13)

u(x) =

{
x1−σ−1

1−σ + 1 if σ ≥ 0 and σ 6= 1,

ln(x) + 1 if σ = 1.
(5.14)

Observe that σ = 0 implies u(x) = x as used in the previous sections. The calibration

mainly relies on the values chosen in Pissarides (2009). The benchmark calibration is

done for a ’typical’ separated labor market in the United States at quarterly frequency.

Table 5.1 summarizes the choices for the parameters for the benchmark case. Worker

flows, labor market tightness and consequently unemployment are taken from the Job

Openings and Labor Turnover Survey (JOLTS) and the Help-Wanted Index (HWI) as

reported in Pissarides (2009) and Shimer (2005a). Hence, the average separation rate

πx = 0.036, job finding rate qw = 0.594 and labor market tightness θ = 0.72 for the

periods 1960 to 2004 were targeted. As the evidence for the returns to scale in matching

is not persuasively conclusive, I will base the benchmark calibration on the assumption

ξ = 1. Deviations from the constant returns to scale scenario will then be introduced

by setting ξ to the boundary values ξ ∈ {0.5, 1.5}. To target the same unemployment

rate I will recalibrate the efficiency parameter of the matching function M0 accordingly.

Chetty (2006b) estimates the parameter of relative risk-aversion close to 1. Chetty and

Szeidl (2007) argue that for small shocks such as an unemployment spell this value could

be considerably bigger. I set the coefficient of risk-aversion to σ = 2. Nickell et al. (2005)

report that a 10% increase in the replacement ratio leads to an increase of unemployment

by 1.11%-points. I chose the value for the elasticity of the search cost function ν to be

3. This slightly overestimates the responsiveness reported by Nickell et al. (2005) but

implies that the corrected unconditional matching elasticity is not unreasonably large.

Appendix section B explains this correction procedure. The correction has to be made

because search intensity is usually unobserved which implies that estimates of the match-

ing function elasticities take the endogenous adjustment of search intensity into account

which is not done by the deep parameter η. Taking an estimate of η̃ = 0.4 for the United

States which comes close to the values reported by Anderson and Burgess (2000) im-

plies that η = η̃ ν
ν−1

= 0.6.37 The bargaining power is then set accordingly to ω = 0.6

37Note that the correction formula was derived from the optimal job search condition of risk-neutral
workers while the benchmark calibration is done for the case of risk-aversion. The correction is therefore
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to rule out any additional unbalanced search externalities that would add on top to the

ones created in the presented non-constant returns to scale scenarios. In the benchmark

calibration I rule out decreasing marginal productivity and set the marginal product to

y = a = 1. In equilibrium this will imply a wage that is only slightly lower than 1. A crit-

ical choice is the one of the value of unemployment z = b+h− k(s). Although I will look

at optimal UB I need a value for currently implement benefits that lead to the observed

unemployment rate. The OECD tax benefit calculator gives an initial replacement rate of

approximately 50% to 70% depending on personal characteristics like marital status and

number of children, etc. Benefits last for 6 months. Afterwards the unemployed worker

receives other social assistance payments. To take this loss of unemployment income into

account I target the lower bound of the tax benefit calculator’s outcome and set b = 0.5.

Hall and Milgrom (2008) derive a total value of unemployment of z = 0.71 that I will

target as well, i.e. h− s(k) = 0.21. It is not clear how much weight to put on pure home

production h on one side and the effort costs of search k(s) on the other side. Hagedorn

and Manovskii (2008) argue that home production might be substantial at the same time

b + h must not exceed the wage w because I want to rule out an equilibrium where no

search, i.e. s = 0 ⇒ k(0) = 0, is optimal. I set h = 0.3 and k0 = 0.05 to comply with

these constraints.

Table 5.1: Benchmark calibration

Parameter Value Source/Target

r 0.004 Pissarides (2009)
πx 0.036 Shimer (2005a)
ν 3 εuh ≈ 1.1, Nickell et al. (2005)
η 0.6 η̃ = 0.4, Anderson and Burgess (2000)
ω 0.6 no additional inefficiency
c 0.22 average θ, Pissarides (2009)
b 0.5 OECD tax benefit calculator
h 0.3 b+ h almost at w, Hagedorn and Manovskii (2008)
M0 0.5973 job finding probability, Shimer (2005a)
k0 0.05 z = 0.71, Hall and Milgrom (2008)
σ 2 Chetty (2006b) and Chetty and Szeidl (2007)
ξ 1 returns to scale, benchmark

y = a 1 normalization

Table E.1 in the appendix summarizes all calibrations for b = 0.5 for different combi-

nations of coefficients of constant relative risk-aversion, returns to scale in the matching

function and degrees of decreasing marginal productivity in order to match qw and con-

sequently u of our benchmark by adjusting M0 accordingly.38

not completely precise but should give a reasonable value for the unconditional elasticity.
38This procedure obviously eliminates all effects of different choices of market size L which are absorbed

by M0. For the presented values of M0 a local labor market size of L = 1000 was assumed.
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5.2 Numerical results

To study the effects over the business cycle I used shocks to factor productivity a of

plus and minus 10%, which are clearly at the upper bound of reasonable values. Table

5.2 states optimal UB for different combinations of productivity shocks and assumptions

concerning returns to matching and relative risk-aversion.

Table 5.2: Optimal unemployment benefits over the cycle

σ ξ a

0.9 1.0 1.1

0.5 0.0407 0.0437 0.0465
0 1.0 0.0000 0.0000 0.0000

1.5 -0.0136 -0.0145 -0.0153

0.5 0.3338 0.3921 0.4515
2 1.0 0.3213 0.3785 0.4369

1.5 0.3171 0.3740 0.4320

Three important findings can be inferred from those results. First, the level of optimal

Pigouvian UB to correct for excessive or too little aggregate search is rather small. For

the boundary values of reasonable choices of ξ I find that for decreasing returns to scale

benefits have to be set to about 4.4% of the wage to correct for excessive search while

for increasing returns UB have be to -1.5% of the wage. Second, the responsiveness of

optimal Pigouvian UB over the cycle is very mild given the size of the productivity shocks.

From the worst to the best productivity state UB vary from 0.0407 to 0.0465 if returns

are decreasing and from -0.0136 to -0.0153 if returns are increasing. And third, in case

of risk-aversion one can establish a strong pro-cyclicality of UB due to the within-period

insurance motive which overturns the counter-cyclicality due to search correction in the

case of increasing returns to matching. I will comment on all three findings in the rest of

this section.

The simulation results show that the variation of optimal b over the cycle is quantitatively

not very important. But this result might be a direct consequence of the Shimer (2005a)-

puzzle. Recall that optimal b has to move with ΓS, the social per-period surplus, as

restated in (5.15) for the case of risk-neutral workers.

b = (1− ξ)ΓS(1− u). (5.15)

Shimer argues that the canonical model cannot reproduce the comparably large elasticity

of labor market tightness θ w.r.t. labor productivity shocks a that is observed in the

data. While the observed elasticity is εθa = 7.56 the model only predicts εθa = 1.71 for an
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otherwise reasonable calibration. Expressing (5.15) in terms of elasticities39 gives

εba =

[
(1− η̃v) +

η̃vu

1 + (ξ − 1)(1− u)

]
· εθa. (5.16)

Clearly, if εθa would be blown up by the factor 4.42 to match the data also optimal benefits

should react stronger to the business cycle by the same factor. Obviously, if one thinks

that the Shimer-Puzzle stems from a misspecification of the model it has to be pointed

out that the same model was used to derive the optimal benefit formula. However, if the

low sensitivity merely results from an unrealistic calibration, as argued by Hagedorn and

Manovskii (2008), then (5.16) is correctly specified and the sensitivity of optimal UB to

the cycle can be amplified by e.g. increasing the value of home production. This would

have two consequences in the model. On one hand, wages become less flexible which

boosts the variability of the match surplus and hence would imply more variation in op-

timal UB over the cycle. On the other hand, the surplus as such becomes smaller and so

does the level of optimal UB. Hence, changing the calibration as suggested by Hagedorn

and Manovskii (2008) would trade-off my findings one and two.

Finding three stems from the strong pro-cyclicality requirement for the benefits to insure

the workers against unemployment risk within a period. The reason is that wages strongly

co-move with the cycle which would in good times increase the difference of income from

employment versus income from unemployment if latter was constant. Due to their sticky

wage assumption this effect is less pronounced in Landais et al. (2010). Observe that in

the current set-up intertemporal insurance and consumption smoothing between periods

is ignored as I just compare steady states with different levels of aggregate productivity

and assume that government budget has to be balanced period by period. Introducing

a motive for intertemporal insurance would require a full dynamic, stochastic framework

beyond the scope of this paper which tries to focus on the Pigouvian character of UB

rather then the provision of insurance. Assuming that the government - in contrast to

the workers - faces an intertemporal budget constraint that allows to shift resources over

time it would mimic precautionary savings of the workers to smooth their consumption

over the cycle. Hence, intertemporal insurance would demand counter-cyclical benefits.

This might counteract the strong pro-cyclicality found for within period insurance.

So far I assumed that marginal productivity is independent of the level of employment.

Relaxing this assumption as done in Landais et al. (2010) introduces a stronger sensitivity

of the model to changes in the parameterization that requires some recalibration effort.

However, it does not imply an amplification of the surplus sensitivity as demonstrated by

39The derivation is provided in appendix A.
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the results in table E.2. The intuition is straightforward. A positive shock to productivity

directly increases the surplus and therefore employment. But the increase in employment

reduces the marginal product and therefore dampens the total effect. Hence, in contrast

to Landais et al. (2010) the degree of decreasing marginal productivity interacts with the

extent of the search externality in a negative way.

6 Conclusion

Beside the function of insuring workers against the risk of unemployment, unemployment

benefits might also be used as a Pigouvian instrument. When the magnitude of dis-

torted aggregate search depends on the state of the economy along the business cycle,

unemployment benefits optimally have to vary over the cycle too, even if workers are

risk-neutral. The paper presents a Diamond-Mortensen-Pissarides model that explicitly

allows for non-constant returns to matching that generate this type of externalities as

the additional level effects of unemployment on the match efficiency are not taken into

account by the agents. The presented model nests the model of Landais et al. (2010) who

find that unemployment benefits should always be positive and even more so in bad times

even if the insurance provision motive is neglected. It is shown that their result is sensi-

tive to the choice of the welfare criterion. After taking aggregate profits into account and

dropping the criticized assumption of wage rigidity for new hires, I derive a generalized

Hosios-condition guaranteeing constrained efficiency. If returns to scale are non-constant

another dimension of search externalities related to the aggregate amount of search effort

is introduced that requires government intervention in any case. The implementation of

the optimal allocation involves pro-cyclical (counter-cyclical) benefits correcting for ex-

cessive (too little) aggregate search activity if the matching function exhibits decreasing

(increasing) returns to scale. In a numerical exercise I introduce risk-aversion to assess

the role of Pigouvian benefits compared to the typical function of insurance provision.

It is shown that the quantitative role is rather limited. However, this conclusion might

be premature in light of the fact that the low variability of the optimal unemployment

benefits is directly connected to the implausibly low responsiveness of the match surplus

to productivity shocks for this class of models, an enigma known as the Shimer-puzzle.
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A Derivations and proofs

Derivations of the elasticities in section 2.1. Note that ∂Φ(Lu·m(s,θ))
∂Lu·m(s,θ)

= Φ(Lu·m(s,θ))
Lu·m(s,θ)

· ξ and
∂m(s,θ)
∂θ

= m(s,θ)
θ
· (1− η).

∂qw(s, u, θ)

∂θ
=

1

Lu
· ∂Φ(Lu ·m(s, θ))

∂Lu ·m(s, θ)
· Lu · ∂m(s, θ)

∂θ

=
Φ(Lu ·m(s, θ))

Lu ·m(s, θ)
· ξ · m(s, θ)

θ
(1− η)

= (1− η)ξ
qw

θ
= (1− η)ξqf = ηvq

f .

Note that Φu ≡ ∂Φ(Lu·m(s,θ))
∂u

= ξqwL and ΦL ≡ ∂Φ(Lu·m(s,θ))
∂L

= ξqwu.

∂qw(s, u, θ)

∂u
=

Φ′ · Lu− L · M
L2u2

=
ξqwL · Lu− L · M

L2u2

= (ξ − 1)qwu−1

∂qw(s, u, θ)

∂L
= (ξ − 1)qwL−1.

Proof of proposition 4.3. The optimal UB formula given by (4.12) is derived as follows.

First, compare (2.26) and (4.6). Given that ω = η and t = 0 efficiency is restored

if and only if ξSS = S or ξΓS = Γ. Use the relation of both per-period surpluses

Γ = ΓS − b/(1 − u) and solve for b. To prove the last statement of proposition 4.3 one

simply has to show that ΓS and 1− u are pro-cyclical. First, note the following relation

of the social and the decentralized per-period surplus

ΓS = SS(r + πx) = S(r + πx) +
b

1− u ≡ Γ +
b

1− u. (A.1)

Insert the optimal benefits (4.12) in the job creation condition (1− ω) Γ
r+πx

= c
qf

to get

(1− ω)ξ
ΓS

r + πx
=

c

qf
. (A.2)

Next, eliminate search intensity s by inserting for k(s)− sk′(s) = (ν− 1)k(s) = ν−1
ν

ω
1−ωcθ

and use the unconditional probability40 q̃f . Rearrange to get

y − h =
r + πx

(1− ω)ξ

c

q̃f
+
ν − 1

ν

ω

1− ωcθ. (A.3)

40See appendix section B.
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Clearly, when a increases y and consequently the left-hand side have to rise. As the right-

hand side is increasing in θ41, I have established that dθ/da > 0. Applying this relation to

(A.2) and the Beveridge curve using unconditional job finding probabilities implies that

dΓS/da > 0 and d(1− u)/da > 0 which completes the proof.

Derivations of the elasticity in section 5. First take the total differential of (4.12).

db = (1− ξ)(1− u) dΓS + (1− ξ)ΓS d(1− u) ⇔ εba = εΓ
S

a + ε1−ua . (A.4)

I will rewrite (A.4) in terms of εθa but before that I will contrast the social per-period

surplus ΓS with the decentralized per-period surplus Γ

Γ ≡ [y − (h− b/(1− u)− k(s))− sk′(s)] such that ΓS − b

1− u = Γ. (A.5)

Inserting the optimal benefits gives ξΓS = Γ, i.e. at the optimum benefits will not only

force the decentralized per-period surplus to coincide with the optimal share of the social

per-period surplus but also both surpluses will move over the cycle in a synchronized way,

i.e. εΓ
S

a = εΓa . Rewrite the job creation condition, take the total differential and rearrange

to get

εΓa = (1− η̃v)εθa = εΓ
S

a , (A.6)

where I used the unconditional vacancy filling probability q̃f 42. Next, one has to transform

ε1−ua which is equal to ε1−uθ · εθa. The derivative of 1−u = q̃w(u,θ)
πx+q̃w(u,θ)

w.r.t. a can be written

as
d(1− u)

da
=
∂(1− u)

∂q̃w
· ∂q̃

w

∂θ
· dθ
da
− ∂(1− u)

∂q̃w
· ∂q̃

w

∂u
· d(1− u)

da
, (A.7)

where I used the fact that du
da

= −d(1−u)
da

. The first term in (A.7) can be computed as

follows

∂(1− u)

∂θ
=
η̃vθ
−1q̃w [πx + q̃w]

[πx + q̃w]2
− η̃vθ

−1 (q̃w)2

[πx + q̃w]2

= (1− u)η̃vθ
−1 [u+ 1− u]− η̃vθ−1(1− u)2 (A.8)

= η̃vθ
−1(1− u)u.

Proceed analogously to get ∂(1−u)
∂u

= (ξ − 1)(1− u). Both can now be combined to get

ε1−ua =
η̃vu

1 + (ξ − 1)(1− u)
· εθa. (A.9)

41See appendix C for more details concerning this statement.
42See appendix section B.
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In total the elasticity of optimal b w.r.t. a is therefore given by

εba =

[
(1− η̃v) +

η̃vu

1 + (ξ − 1)(1− u)

]
· εθa. (A.10)

Proof of proposition 4.2. I introduce proportional taxes/subsidies for all flow variables:

output, value of leisure, vacancy posting costs, the worker’s and the employer’s wage rate.

Denote the corresponding proportional tax rates ty, tz, tc, tw and tf . First, assume that

our surplus sharing condition (2.22) is unaffected. Rearrange to get ωrJ − (1− ω)rW =

−(1− ω)rU and insert to get

w =
ω(1− ty)y + (1− ω)(1− tz)z + ω(1− tc)cθ

ω(1− tf ) + (1− ω)(1− tw)
. (A.11)

Inserting in the job creation condition with taxes,

(1− ty)y − (1− tf )w
r + πx

= (1− tc) cθ
qw
, (A.12)

and analyzing the condition for optimal search with taxes,

(1− tc)cθ ω

1− ω = (1− tz)sk′(s), (A.13)

reveals that for no values of our taxes one can mimic (2.26). Now consider the case where

the sharing rule is affected by taxation because I explicitly derive it from Nash bargaining.

This implies

ω(1− tw)rJ − (1− ω)(1− tf )rW = −(1− ω)(1− tf )rU. (A.14)

The wage would then be given by

w =
ω

1− tf [(1− ty)y + (1− tc)cθ] +
1− ω
1− tw (1− tz)z. (A.15)

Again, after inserting in (A.12) it is easy to verify that there is no way to implement

(2.26).

33



B Conditional versus unconditional matching func-

tion

The model treats search intensity as an endogenous variable which enters the matching

function and itself is a function of u and v. As search intensity is very hard to measure,

empirical studies typically only estimate elasticities w.r.t. u and v neglecting search in-

tensity. Those estimates then take endogenous responses of s implicitly into account and

therefore do not coincide with the their theoretical counterparts ηu and ηv that measure

changes in the number of matches for constant search intensity. Putting a little bit of

structure on the search cost function will allow to correct the estimated elasticities and

relate them to the deep parameters of the model. As an illustration, this is only done for

the case of risk-neutrality as the optimal job search condition simplifies considerably in

that case. Assume that the function k(·) is characterized by a constant elasticity εks = ν.

Consequently, also the function κ(s) ≡ sk′(s) will have a constant elasticity εκs = ν.

Rewrite the optimal job search condition (3.7) as

s = κ−1

(
ω

1− ωcθ
)
≡ s(θ). (B.1)

This implies the following elasticities ε
s(θ)
θ = 1/ν and ε

k(s(θ))
θ = 1. Now eliminate s by

inserting (B.1) in the function for aggregate search activity Lm(su, v) conditional on s.

This results in an unconditional function Lm̃(u, v) with the following elasticities

εm̃u = η − η

ν
≡ η̃ and εm̃v = 1− η +

η

ν
≡ 1− η̃. (B.2)

Clearly, also the unconditional aggregate search activity function has constant returns to

scale. The elimination of s just implies a re-weighting of the elasticities in favor of the

vacancy rate. Further, the total matching elasticities are simply εM̃u = η̃ · ξ ≡ η̃u and

εM̃v = (1− η̃) · ξ ≡ η̃v. Thus the degree of returns to scale is independent of whether one

uses the conditional or the unconditional matching function. This is obviously a direct

consequence of the invariance of the labor market tightness θ and consequently search

intensity s in (3.7) to changes in the market size. The derived reduced-form matching

function not only allows to work with a smaller dimensional model but also helps to relate

the model’s conditional elasticities to the observed ones: η̃u and η̃v. Note however that

the optimality conditions are obviously unaffected and are still given by ωw = ηu and

ωf = ηv. The next proposition states the generalized Hosios-condition in terms of the

observed, unconditional elasticities.

Proposition B.1. Generalized Hosios-condition for unconditional elasticities:

The allocation is efficient if, in addition to b = 0, the effective bargaining powers coincide
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with corrected versions of the unconditional elasticities, i.e. if

ωw = η̃u +
ξ

ν
and ωf = η̃v −

ξ

ν
. (B.3)

Proof. This follows directly from combining the derived relation of the conditional and

unconditional elasticities and proposition 4.1.

Importantly, one must strictly distinguish the unconditional matching function in case of

variable search intensity from the case with fixed search effort often used in the literature

where optimality is given by ωw = η̃u instead of (B.3). Observe how the fixed search effort

case is nested in this model by letting ν →∞.

C Uniqueness and multiplicity of equilibria

This section derives conditions for uniqueness and multiplicity of equilibria for the case of

risk-neutrality. I will concentrate on the non-policy case, i.e. b = 0 and T = 0 to isolate

multiplicity stemming from the matching technology. First, let the implicit solution to the

Beveridge curve (2.8) be u(θ). If ξ = 1, then the solution for u can be expressed explicitly.

Take the total differential of the rearranged Beveridge curve, uqw(s(θ), u, θ) + uπx = πx,

to arrive at

u
∂qw

∂s(θ)

∂s(θ)

∂θ
dθ + u

∂qw

∂θ
dθ + u

∂qw

∂u
du+ qw du+ πx du = 0

⇔ u
qw

s(θ)

s(θ)

θ
εq
w

s ε
s(θ)
θ dθ + u

qw

θ
εq
w

θ dθ + u
qw

u
εq
w

u du+ qw du+ πx du = 0

⇔ qw

θ

[ηu
ν

+ ηv

]
dθ +

qw

u

[
ξ − 1 +

1

1− u

]
du = 0

Clearly, for all degrees of scale it is always true that ε
u(θ)
θ < 0. For the job search

condition (3.7) I work with the simple iso-elastic functional form of the search effort

function, k(s) = k0s
ν , which is also used in the simulation part. The explicit solution of

the job search condition is then

s =

[
ω

1− ω
c

νk0

] 1
ν

θ
1
ν . (C.1)

as derived in appendix section B. Therefore the following relations can be established

k(s(θ)) =
ω

1− ω
c

ν
θ, (C.2)

k(s(θ))− s(θ)k′(s(θ)) = (1− ν)k(s(θ)) =
1− ν
ν

ω

1− ωcθ < 0. (C.3)
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Insert the last expression, s(θ) and u(θ) in the job creation condition (2.14) and rearrange

to get

ωf
[
y − h
r + πx

]
=

c

qf (θ)
+

ωf

r + πx
ν − 1

ν

ω

1− ωcθ. (C.4)

where qf (θ) ≡ qf (s(θ), u(θ), θ). Every θ∗ that solves (C.4) gives an equilibrium.

Lemma C.1. dqf (θ)
dθ

> (<) 0 is a sufficient (necessary) condition for uniqueness (multi-

plicity) of equilibria.

Proof. Simply observe that dqf (θ)
dθ

> (<) 0 is a sufficient (necessary) condition for the

right-hand side of (C.4) to monotonically decrease (to be non-monotonic) in θ.

I will now take a closer look at qf (θ). The elasticity of qf (θ) w.r.t. θ is given by

ε
qf (θ)
θ = ηv − 1 +

ηu
ν

+ (ξ − 1)ε
u(θ)
θ , (C.5)

where ε
u(θ)
θ < 0 as derived before. Observe that this elasticity is negative if and only if

the following condition holds

η
1− ν
ν

+
ξ − 1

ξ

[
1 + ε

u(θ)
θ

]
< 0. (C.6)

Proposition C.1. Assume that |εu(θ)
θ | < 1 then ξ ≤ (>) 1 is a sufficient (necessary)

condition for uniqueness (multiplicity) of equilibria.

Proof. This follows directly from equation (C.6).

The assumption of |εu(θ)
θ | < 1 does not seem to be unreasonable. In my simulation, using

b = T = σ = 0, this elasticity is −0.57 for the calibration with ξ = 0.5 and −0.59 for

ξ = 1.5.43 Hence, multiple equilibria can only occur with increasing returns to scale of

the matching function.

D Implementation by wage dependent benefits

Often UB are designed in a way such that they are a constant fraction of the wage, i.e.

as a replacement ratio. This section shows how the findings would change in this case.

Contrary to absolute UB the optimal replacement ratio should be pro-cyclical (counter-

cyclical) if ξ > 1 (ξ < 1). As common in the policy oriented strand of the macro-labor

literature I assume that UB are given by b = ρw, where ρ denotes the replacement ratio.

While this seems to be an appropriate specification in many contexts it is problematic for

43Inserting this elasticity and the other parameters in (C.6) reveals that multiplicity is not an issue in
my simulations.
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the exercise of looking at comparative statics w.r.t. productivity. The reason is that in

reality b depends on the previous wage and not on a currently by the business cycle affected

wage index44 as suggested in this specification. Hence, the original specification taking b

constant seems to be more appropriate. Nevertheless, I will provide a short analysis of

wage dependent benefits. A single bargaining pair takes the wage index as given, i.e. it

does not change the sharing rule if it was derived from explicit Nash-bargaining. Hence,

one can simply insert z = h+ ρw − k(s) into (2.23) and solve for the wage

w =
(1− ω) [h− k(s) + sk′(s)] + ωy

1− (1− ω)ρ
. (D.1)

I have established that optimal benefits in absolute numbers should be proportional to

the social surplus and the employment rate. If benefits vary with current wages and wages

fluctuate stronger than the match surplus and 1 − u than the derived optimal business

cycle responses will be reversed. Insert b = ρw in (4.12) to get

ρ = (1− ξ)Γ(1− u)

w
. (D.2)

Recall that given the assumptions on the functional form of k(·) one can rewrite k(s) −
sk′(s) = (1− ν)k(s). Insert (D.1) in (D.2) to get

ρ

1− (1− ω)ρ
= (1− ξ)

[
y − h− (ν − 1)k(s)

ωy + (1− ω) [h+ (ν − 1)k(s)]

]
. (D.3)

The right-hand side is increasing in ρ. It seems that whether or not the right-hand side

increases with a will depend on the bargaining power ω. Clearly, for ω → 1 the right-

hand side is decreasing in a as ds/da > 0. For the other case ω → 0 it is analytically

ambiguous but numerical simulations suggest that the relevant term y
h+(ν−1)k(s)

is quite

robustly decreasing in a as well. Hence, wages fluctuate stronger than the social surplus

and the cyclical pattern of the optimal replacement ratio is reversed compared to UB in

absolute terms.

E Tables

44The average wage or wage index coincides with individual wages of the employed workers as workers
are homogeneous in the present framework.
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Table E.1: Different calibration scenarios

Scenario ξ σ α M0 w s u θ qw T

Benchmark 1 2 1.000 0.5973 0.9894 1.2348 0.0571 0.7188 0.5940 0.0303
Case 2 0.5 2 1.000 4.5025 0.9894 1.2348 0.0571 0.7188 0.5940 0.0303
Case 3 1.5 2 1.000 0.0792 0.9894 1.2348 0.0571 0.7188 0.5940 0.0303

Case 4 1 0 1.000 0.6509 0.9902 1.1325 0.0571 0.6602 0.5940 0.0303
Case 5 0.5 0 1.000 4.7001 0.9902 1.1325 0.0571 0.6602 0.5940 0.0303
Case 6 1.5 0 1.000 0.0901 0.9902 1.1325 0.0571 0.6602 0.5940 0.0303

Case 7 1 0 0.995 0.7595 0.9539 1.0394 0.0571 0.5104 0.5940 0.0303
Case 8 0.5 0 0.995 5.0775 0.9539 1.0394 0.0571 0.5104 0.5940 0.0303
Case 9 1.5 0 0.995 0.1136 0.9539 1.0394 0.0571 0.5104 0.5940 0.0303

Table E.2: Optimal unemployment benefits for different marginal product assumptions

α = 1.000 α = 0.995

ξ a ξ a

0.9 1.0 1.1 0.9 1.0 1.1

b 0.0407 0.0437 0.0465 b 0.0345 0.0371 0.0394
0.5 ΓS 0.0837 0.0897 0.0952 0.5 ΓS 0.0707 0.0759 0.0805

u 0.0284 0.0258 0.0237 u 0.0251 0.0228 0.0210

b 0.0000 0.0000 0.0000 b 0.0000 0.0000 0.0000
1.0 ΓS 0.0419 0.0447 0.0472 1.0 ΓS 0.0352 0.0375 0.0397

u 0.0263 0.0240 0.0221 u 0.0233 0.0212 0.0195

b -0.0136 -0.0145 -0.0153 b -0.0114 -0.0122 -0.0129
1.5 ΓS 0.0279 0.0297 0.0314 1.5 ΓS 0.0234 0.0249 0.0263

u 0.0257 0.0234 0.0216 u 0.0228 0.0207 0.0191

38


	1 Introduction
	2 Model description
	2.1 Matching technology
	2.2 Representative firm
	2.3 Workers
	2.4 Wage determination
	2.5 Surplus taxation

	3 Equilibrium
	4 Social optimum and implementation by benefits
	4.1 Sticky wages and job rationing
	4.2 Flexible wages and non-constant returns to matching

	5 A numerical example and risk-aversion
	5.1 Calibration
	5.2 Numerical results

	6 Conclusion
	References
	A Derivations and proofs
	B Conditional versus unconditional matching function
	C Uniqueness and multiplicity of equilibria
	D Implementation by wage dependent benefits
	E Tables

